Weak log-majorization, Mahler measure and polynomial inequalities
نویسندگان
چکیده
منابع مشابه
Weak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملweak log-majorization inequalities of singular values between normal matrices and their absolute values
this paper presents two main results that the singular values of the hadamard product of normal matrices $a_i$ are weakly log-majorized by the singular values of the hadamard product of $|a_{i}|$ and the singular values of the sum of normal matrices $a_i$ are weakly log-majorized by the singular values of the sum of $|a_{i}|$. some applications to these inequalities are also given. in addi...
متن کاملMahler measure of some n-variable polynomial families
The Mahler measures of some n-variable polynomial families are given in terms of special values of the Riemann zeta function and a Dirichlet L-series, generalizing the results of Lalín (J. Number Theory 103 (2003) 85–108). The technique introduced in this work also motivates certain identities among Bernoulli numbers and symmetric functions. © 2005 Elsevier Inc. All rights reserved.
متن کاملPolynomial Inequalities, Mahler’s Measure, and Multipliers
We survey polynomial inequalities obtained via coefficient multipliers, for norms defined by the contour or the area integrals over the unit disk. Special attention is devoted to the Szegő composition and the inequalities related to Mahler’s measure. We also consider a new height on polynomial spaces defined by the integral over the normalized area measure on the unit disk. This natural analog ...
متن کاملWeak matrix majorization
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization ( s ) and directional majorization ( ). It is verified that s⇒ ⇒ w , but none of the reciprocal implications is true. Nevertheless, we study the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2007
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.02.011